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Objective: Bone morphogenetic protein-7 (BMP7), unique uncoupling protein-1 (UCP1), PR domain containing 16 (PRDM-16), and irisin are 
important brown adipose tissue (BAT) markers. This study aimed to evaluate the effects of insulin glargine and exenatide treatment on BAT 
markers and epicardial adipose tissue (EAT) volume in patients with type 2 diabetes mellitus (T2DM).

Methods: The study included 33 patients with T2DM. Patients with T2DM were randomized to the insulin glargine and exenatide arms. Before 
and 24 weeks after treatment, serum BAT markers and EAT levels were evaluated and compared in both treatment arms.

Results: EAT decreased in both groups with treatments (both groups p<0.001), but there was no significant difference between the two groups 
when compared. BMP7 significantly decreased with exenatide treatment (p=0.03). UCP1 significantly decreased with insulin glargine treatment 
(p=0.008). Pre- and post-treatment percentage changes in irisin, BMP7, UCP1, and PRDM-16 were similiar.

Conclusion: Weight loss and a decrease body fat mass occur with exenatide treatment, but this is probably unrelated to BAT activation.
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ABSTRACT

ÖZ
Amaç: Kemik morfojenik proteini-7 (BMP7), unique uncoupling protein-1 (UCP1), PR domain containing 16 (PRDM-16) ve irisin önemli kahverengi 
yağ doku (KYD) belirteçlerindendir. Bu çalışma tip 2 diabetes mellitus hastalarında (T2DM)  insülin glargin ve eksenatid tedavisinin KYD belirteçleri 
ve epikardiyal yağ dokusu (EYD) üzerine etkilerini incelemeyi amaçlamıştır.
Gereç ve Yöntem: Çalışmaya 33 T2DM hastası alındı. T2DM hastaları, insülin glargin ve eksenatid kollarına randomize edildi. Her iki tedavi 
kolunda serum KYD belirteçlerinin ve EYD düzeylerinin tedaviden önce ve tedaviden 24 hafta sonraki verileri değerlendirildi ve karşılaştırıldı.
Bulgular: EYD tedavi ile her iki grupta da azaldı (her iki grupta da p<0,001), ancak her iki gruptaki değişimler karşılaştırıldığında aralarında 
anlamlı fark yoktu. BMP7 eksenatid tedavisi ile anlamlı azaldı (p=0,03). UCP1 insülin glargin tedavisi ile anlamlı azaldı (p=0,008). İrisin, BMP7, 
UCP1 ve PRDM-16’nın tedavi öncesi ve tedavi sonrası yüzde değişimleri benzerdi.
Sonuç: Eksenatid tedavisi ile vücut ağırlığında ve total vücut yağında anlamlı azalma oldu ancak bu muhtemelen KYD aktivasyonu bağlı değildi.
Anahtar Kelimeler: Tip 2 diabetes mellitus, BMP7, epikardiyal yağ dokusu, irisin, UCP1, PRDM-16
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INTRODUCTION
The frequency of diabetes and obesity has recently increased 
(1). Obesity causes insulin resistance, which further results 
in type 2 diabetes mellitus (T2DM) treatment difficulties. 
Recently, guidelines have focused on new anti-obesity drug 
options to break this vicious cycle. Glucagon-like peptide-1 
(GLP-1) receptor analogs (GLP-1RAs) are anti-diabetic and 
anti-obesity drugs that provide a gate to break this vicious 
cycle by contributing to weight loss. GLP-1RAs exert weight 
loss effects through various mechanisms, such as central 
and peripheral effects. Weight loss potentials with brown 
adipose tissue (BAT) activation have become of particular 
interest after encouraging initial results (2,3). Humans have 
three morphological types of adipose tissue: white adipose 
tissue (WAT), beige adipose tissue, and BAT (4). BAT is an 
energy-wasting tissue that increases energy expenditure 
and chemical energy for thermogenesis (5,6). BAT activation 
can improve metabolic parameters such as hyperglycemia 
and dyslipidemia, thus making BAT activation a potential 
therapeutic target for obesity and other metabolic diseases 
(7,8). BAT contains high mitochondrial density and expresses 
high levels of uncoupling protein 1 (UCP1). UCP1, which 
is the most important marker of BAT, is also expressed in 
human BAT and can regulate thermogenesis (9,10). Bone 
morphogenic protein-7, PR domain containing 16 (PRDM-
16), and irisin are BAT-related markers.

Bone morphogenesis proteins (BMPs) are members of the 
superfamily of transforming growth factor β (TGF-β). They 
participate in brown adipocyte development and insulin 
sensitivity and increase the expression of the PRDM-16. 
PRDM-16 is a key transcriptional regulator of brown adipose 
identity (11-13). PRDM-16 induces gene expression in 
BAT. Irisin is a newly discovered myokine that is secreted 
in response to exercise (14). Irisin increases PPARα and 
UCP1 expression, browns WAT (15), improves islet β-cell 
proliferation (16), and increases energy consumption and 
thermogenesis of both skeletal muscles and BAT (17).

There are different methods to evaluate BAT, such as 
18F-fluorodeoxyglucose positron emission tomography 
integrated with computed tomography (18F-FDG PET-CT) 
and magnetic resonance imaging (MRI). Epicardial adipose 
tissue (EAT) is visceral fat surrounding the pericardium and 
myocardium; however, its biological characteristics are still 
not completely known (18). The main marker of BAT is a 
unique UCP1, which was detected in EAT. Therefore, EAT 
includes BAT components (19). Studies have shown that 
the reliability of transthoracic echocardiography (ECHO) in 
measuring EAT correlates well with MRI (20). 

There are studies examining the effect of GLP-1RAs on 
BAT in animal studies. (3,21-23) However, there are very few 
human studies on this subject, and they are conflicted (2,24). 
Insulin glargine is a long-acting basal insulin analog used 
daily for the treatment of T2DM. To our knowledge, the 
effect of insulin treatment on BAT has not been investigated 
in the literature. To our knowledge, the comparative effect 
of treatment with exenatide versus insulin glargine on the 
serum levels of irisin, PRDM-16, BMP7, and UCP1 has not 
been studied.

This study investigated the potential roles of the GLP-1 
agonist exenatide on metabolic parameters, EAT value, 
and serum levels of PRDM-16, irisin, UCP1, and BMP7 by 
comparing patients with diabetes treated with exenatide 
with those treated with insulin glargine. 

METHODS

Study Design and Participants
This prospective, randomized, active-controlled study was 
conducted in the Kocaeli University School of Medicine 
Department of Endocrinology outpatient unit between 
2016 and 2019. The study included 33 patients with T2DM. 
The age of patients with T2DM enrolled in the study was 
between 18 and 65 years, body mass index (BMI) was 25-
35 kg/m2, with hemoglobin A1c (HbA1c) >7% and <10%, 
who were on metformin 2×1 g/day alone in stable dose 
for at least 3 months during enrollment. Renal or hepatic 
impairment, thyroid dysfunction, coronary artery disease, 
cardiac failure, infectious or inflammatory disease, cancer 
and pregnancy was exclusion criteria. In addition, patients 
on insulin- or incretin-based therapy and patients with acute 
or chronic pancreatic disease were excluded from the study.

Patients with T2DM were randomized one to one to the 
exenatide or insulin glargine arm to investigate the effects 
of exenatide and insulin glargine treatment on BAT markers 
(irisin, PRDM-16, UCP1, and BMP7) and EAT. Twenty patients 
were included in the exenatide arm and 20 patients in the 
insulin glargine arm. Exenatide treatment was administered 
as 5 μg SC for the first month and titrated to 10 μg SC for 
the next 5 months. Insulin glargine was started at 0.2 IU/
kg at night, and the dose was titrated according to fasting 
blood glucose levels. 0-, 4-, 12-, and 24-week visits of the 
patients were performed. Physical examinations, including 
vital signs and examination of all systems, were performed 
during these visits, and drug side effects were questioned. 
Height, weight, and BMI measurements were taken, and 
routine biochemistry tests were performed at 0- and 24-
week visits. Blood samples for irisin, PRDM-16, UCP1, and 
BMP7 were collected. ECHO measured EAT at 0- and 24-
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week visits. In the insulin glargine arm, two patients left the 
study because they wanted to stop injection therapy, and 
two patients were lost to follow-up. In the exenatide arm, 
two patients were excluded because of the side effect of 
vomiting, and one patient was lost follow-up. The insulin 
glargine arm was completed with 16 patients, and the 
arm with 17 patients. Pre- and post-treatment biochemical 
parameters, irisin, PRDM-16, UCP1, BMP7, and EAT levels 
were compared in both T2DM groups.

This study was approved by the Kocaeli University Non-
Invasive Clinical Research Ethics Committee (decision 
no: KÜ GOKAEK 2017/820, project no: 2017/160, date: 
07.06.2017). All experiments were conducted according to 
the Declaration of Helsinki. Written informed consent was 
obtained from all participants.

Biochemical Analysis
Blood samples were collected at 0 and 24 weeks after 
8-10 hours (h) of fasting at 09.00 in the morning. Serum 
was obtained, and centrifuged blood samples were stored 
at -80 °C until analysis. The concentrations of UCP1, 
irisin, PRDM-16, and BMP7 were analyzed using a Radim 
Diagnostics Rome (Italy) device with a sandwich enzyme-
linked immunosorbent assay method in accordance with 
the manufacturer’s instructions (Elabscience).

Body Weight and Total Body Fat Mass Assessment
Body weight and total body fat mass were measured using 
the bioimpedance analysis technique with the Tanita BC-
418 body composition analyzer device.

Baseline Echocardiography and Assessment of the 
Epicardial Adipose Tissue Thickness
All cases were evaluated with conventional ECHO in the left 
lateral decubitus position using a commercially available 
system (VIVID 7, General Electric-Vingmed Ultrasound, 
Horten, Norway). Measurements were performed by an 
experienced cardiologist blindly. EAT appeared as an echo-
free space in the pericardial layers on a two-dimensional 
ECHO and was measured on the free wall of the right 
ventricle from a parasternal long-axis view, using the aortic 
annulus as an anatomic reference. EAT was measured 
perpendicularly in front of the right ventricular free wall 
at end-systole (20,25). The average value of three cardiac 
cycles was calculated.

Statistical Analysis
Statistical analysis was performed using the Statistical 
Package for Social Sciences (SPSS) for Windows 23.0 (IBM 
SPSS Inc., Chicago, IL). The conformity of the variables to the 
normal distribution was examined visually (histogram and 

probability graphs) using the Shapiro-Wilk test. Descriptive 
data are presented as median and maximum-minimum 
values (median and minimum-maximum) for non-normally 
distributed variables and as mean and standard deviation 
for normally distributed data. The Mann-Whitney U test was 
used for independent variables, and the Wilcoxon signed-
rank test was used for dependent variables to compare the 
numerical values of the two groups that were found to be 
non-normally distributed. An independent t-test was used 
for independent variables, and a paired t-test was used for 
dependent variables to compare the numerical values of the 
two groups that were found to have a normal distribution. 
The results were accepted as a 95% confidence interval, 
statistical significance p<0.05.

RESULTS
The demographic data, pre- and post-treatment biochemical 
parameters of the exenatide and insulin glargine groups 
are summarized in Table 1. The exenatide and insulin 
glargine groups were similar in terms of age, gender, age 
of diabetes, BMI, glucose, and HbA1c level. HbA1c levels 
significantly decreased after treatment in both groups; also, 
the pre- and post-treatment changes of HbA1c were similar 
between groups. 

Effect on the Body Mass Index and Total Body Fat Mass
There was a significant reduction in BMI and total body fat 
mass with treatment in the exenatide group compared with 
glargine (p<0.001; p=0.01, respectively). 

Effect on the Epicardial Adipose Tissue
The impact of exenatide versus insulin glargine treatment on 
EAT is shown in Table 2. EAT levels significantly decreased 
in both treatment groups. However, EAT differences were 
similar between the groups.

Effect on Brown Adipose Tissue Markers 
The impact of exenatide versus insulin glargine treatment 
on BAT markers is shown in Table 2. Pre- and post-treatment 
serum irisin and PRDM-16 levels were similar in both 
treatment arms. BMP7 significantly decreased with exenatide 
treatment (p=0.03). UCP1 significantly decreased with insulin 
glargine treatment (p=0.008). Pre- and post-treatment 
percentage changes in irisin, BMP7, UCP1, and PRDM-16 
were not significantly different between the groups.

DISCUSSION
In this study, although there was a significant improvement 
in BMI and total body fat mass with exenatide compared 
with insulin glargine treatment in patients with T2DM, no 
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Table 1. The demographic data, pre-, and post-treatment biochemical parameters of the exenatide and insulin glargine groups

Variables Exenatide group (n=17) Glargine group (n=16) p-value

Age (years) 49.88±7.76 51.25±6.95 0.599

Gender (female/male) 15/2 10/6 0.095

DM age (years) 4.58±3.89 6.37±4.14 0.211

BMI (kg/m2)-pre 37.47±4.47 35.27±1.92 0.079

BMI (kg/m2)-post 35.89±4.71 35.23±1.76 0.605

p-value <0.001 0.76

Change from baseline (%) -3.42 (-8.01 to -1.24) 0.13 (-0.81 to 0.5) <0.001

Total body fat mass (kg)-pre 40.72±10.38 35.71±5.60 0.100

Total body fat mass (kg)-post 40.37.55±11.50 35.06±5.73 0.103

p-value <0.001 0.06

Change from baseline (%) -9.11 (-13.17 to -3.49) -0.72 (-5.93 to 0,56) 0.01

Glucose-pre (mg/dL) 147.52±39.44 142.81±15.83 0.656

Glucose-post (mg/dL) 132.29±36.08 114±18.15 0.093

p-value 0.02 <0.001

Change from baseline (%) -13.04 (-17.57 to -1.43) -20.53 (-24.11 to -14.59) 0.03

Triglyceride-pre (mg/dL) 160.11±71.62 124.87±63.36 0.145

Triglyceride-post (mg/dL) 202.11±100.15 157.87±91.02 0.195

p-value 0.03 0.02

Change from baseline (%) 22.5 (-8.19 to 58.5) 3.16 (0.00 to 55.64) 1.00

Total cholesterol-pre (mg/dL) 176.23±31.59 193.75±37.34 0.155

Total cholesterol-post (mg/dL) 191.23±21.60 187.46±29.00 0.677

p-value 0.085 0.39

Change from baseline (%) 4.32 (-4.95 to31.97) 0.00 (-6.25 to 1.65) 0.26

LDL cholesterol-pre (mg/dL) 102.27±30.03 129.05±32.91 0.020

LDL cholesterol-post (mg/dL) 106.91±18.92 116.82±33.29 0.298

p-value 0.52 0.17

Change from baseline (%) -3.42 (-9.71 to 41.33) -0.25 (-8.82 to 0.00) 0.65

HDL cholesterol-pre (mg/dL) 42.47±8.70 46.00±8.35 0.244

HDL cholesterol-post (mg/dL) 44.58±8.29 45.68±9.20 0.721

p-value 0.23 0.74

Change from baseline (%) 0.00 (-5.4 to 12.07) 0.00 (-4.19 to 5.27) 0.53

HbA1c-pre (%) 8.43±0.99 8.10±0.45 0.236

HbA1c-post (%) 7.23±1.25 7.11±0.46 0.730

p-value 0.002 ≤0.001

Change from baseline (%) -8.57 (-26.42 to -1.50) -11.60 (-18.13 to -4.42) 1.00

Data was given as mean ± standard deviation or median (minimum-maximum) depending on the distribution.
DM: Diabetes mellitus, BMI: Body mass index, LDL: Low-density lipoprotein, HDL: High-density lipoprotein, TSH: Thyroid-stimulating hormone, HbA1c: hemoglobin 
A1c
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significant difference was observed between the groups 
in posttreatment BAT markers. EAT decreased in both 
treatment groups, but there was no significant difference 
between the two groups.

Brown fat mass in adults is positively related to weight loss 
and metabolic health (26,27) and can be activated (28). In a 
recent study, which compared liraglutide and placebo, BAT 
was measured from the supraclavicular fat depot using MRI, 
and no difference was found between the two groups. In 
this study, the GLP-1 agonist did not affect the activation 
of BAT, and a decreasing or changing supraclavicular fat 
store reflecting BAT was not observed (29). We evaluated 
BAT containing EAT using ECHO, and EAT decreased after 
exenatide and insulin glargine treatment. However, there 
was no significant change in EAT when the two groups were 
compared. Similar to our study, other studies have shown 
that EAT decreased with insulin glargine and exenatide 
treatment (30,31). In contrast to our study, Janssen et al. 
(32) studied the effects of exenatide treatment weekly in 
24 patients who were not obese and without diabetes. 

They found that exenatide increased the volume and FDG 
uptake in cervical and supraclavicular upper mediastinal, 
axillary, and paravertebral BAT depots by 18-F FDG PET-
CT. However, the same result was not achieved when they 
evaluated the supraclavicular region using MRI.  The reason 
we could not obtain similar results may be that we evaluated 
a different BAT region or that our patients were diabetic.

UCP1 is a mitochondrial inner membrane protein considered 
as a marker of BAT activity and is significantly expressed in BAT. 
Wan et al. (33) reported that chronic peripheral treatment with 
the GLP-1R agonist supaglutide upregulates the expression 
of UCP1 in inguinal WAT, not in BAT and epididymal WAT. 
An animal study concluded that GLP-1 agonists did not affect 
UCP1 expression in BAT. They put forward that the GLP-1 
agonist does not increase thermogenesis (24). In line with 
these studies, in our study, UCP1 differences were similar 
between the two treatment arms.  In contrast to our study, a 
previous study showed that centrally administered liraglutide 
increases UCP1 expression in mice in BAT and WAT (2).

Table 2. Exenatide versus insulin glargine treatment’s impact on EAT and brown adipose tissue markers

Variables Exenatide group (n=17) Glargine group (n=16) p-value

PRDM-16-pre 239.29±106.10 227.43±80.88 0.722

PRDM-16-post 232.18±69.75 277.62±194.32 0.386

p-value 0.8 0.2

Change from baseline (%) -5.16 (-14.62 to 20) 9.94 (-16.96 to 54.45) 0.32

Irisin-pre (pg/mL) 6.62±3.37 5.71±2.49 0.386

Irisin-post (pg/mL) 6.09±3.48 5.84±2.84 0.820

p-value 0.2 0.4

Change from baseline (%) -3.07 (-23.11 to 6.48) 12.5 (-13.76 to 19.77) 0.16

UCP1-pre (ng/mL) 1.79±0.89 2.22±1.18 0.241

UCP1-post (ng/mL) 1.26±0.48 1.13±0.73 0.570

p-value 0.06 0.008

Change from baseline (%) -30.97 (-55.10 to 54.54) -36.18 (-77.19 to 6.73) 0.23

BMP7-pre (pg/mL) 213.85±100.75 195.55±90.31 0.587

BMP7-post (pg/mL) 139.69±45.81 153.30±120.37 0.667

p-value 0.03 0.14

Change from baseline (%) -27.96 (-59.10 to 38.29) -21.27 (-69.07 to 28.76) 0.87

EAT-pre cm 0.61±0.15 0.71±0.14 0.176

EAT-post cm 0.48±0.12 0.56±0.15 0.140

p-value 0.000 0.000

Change from baseline (%) -20 (-30.95 to -16.66) -22.5 (-32.14 to -11.45) 0.81

Data was given as mean ± standard deviation or median (minimum-maximum) depending on the distribution.
Pre: Pretreatment, post: Post-treatment, PRDM-16: PR domain containing 16, UCP-1: Unique uncoupling protein 1, BMP-7: Bone morphogenetic protein 7, EAT: 
Epicardial adipose tissue
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Irisin secreted in response to exercise is a newly discovered 
myokine. Animal studies have shown that irisin modulates 
energy metabolism (14). Serum irisin levels significantly 
increased after exenatide treatment in the study by Liu 
et al. (34). In our study, irisin differences were similar in the 
exenatide and glargine treatment groups. In Liu et al.’s study 
(34), exenatide treatment was used as the initial treatment 
for diabetes. In our study, both the exenatide and glargine 
groups used metformin as the initial treatment. Animal and 
human studies have shown that metformin increases serum 
irisin (35,36). Therefore, the use of metformin may be the 
reason why we cannot achieve improvement in the irisin level.

BMPs are members of the TGF-β superfamily (37). BMPs, 
especially BMP4, BMP7, and BMP8, can participate in 
the process of brown adipocyte development and the 
differentiation of white adipocytes to brown adipocytes (12). 
A rat study showed that BMP7 gene expression increased 
after GLP-1 agonist treatment (38). There has been no 
study on levels of BMP7 in patients receiving GLP-1 agonist 
therapy in humans. In this study, BMP7 levels significantly 
decreased with exenatide treatment, but BMP7 differences 
were not significant between the treatment groups. BMP7 
increases the expression of PRDM-16, providing a balance 
between brown fat and skeletal muscle change (39,40). 
GLP-1 agonists increased the activity of insulin-suppressing 
lipolysis in subcutaneous adipose tissue (41). However, the 
benefits of GLP-1 agonists in BAT have not been clearly 
understood (42). A study on mice showed that GLP-1 agonist 
therapy increased both UCP1 and PRDM-16 expression in 
skeletal muscle but not in perigonadal fat (43). So far, we 
noticed no study on serum levels of PRDM-16 in patients 
with diabetes or related to GLP-1 agonist therapy in humans. 
Our results showed that the pre- and post-treatment serum 
PRDM-16 differences were similar in both treatment arms.

The limitations of our study are a relatively low number of 
participants, differences in the duration of follow-up, and 
the non-assessment of the time of physical activity and 
caloric intake. The absence of 4 and 8 weeks of evaluation 
was another limitation. In some studies evaluating REE, the 
REE increment seen in the first week were not seen in further 
weeks. It has been suggested that this was a mechanism 
to limit weight loss (29,44,45). Unfortunately, as we did not 
evaluate the first-week markers, we may have missed the 
increment. However, a longer treatment duration may be 
needed for further activation of BAT. Another reason for 
nonactivated BAT may be the different seasonal activation 
of BAT. We evaluated the results of the participants at 24 
weeks in different seasons; as BAT is cold activated (26,46), 
seasonal changes may affect our results.

CONCLUSION
Weight loss and a decrease body fat mass occur with 
exenatide treatment, but this is probably not related to 
BAT activation. The effects of GLP-1s on BAT in humans are 
controversial. More comprehensive studies are needed with 
more patients and longer follow-up periods to clarify this 
situation.
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